Respuesta :

Answer:

[tex]x=3[/tex]

Step-by-step explanation:

The exponent of a factor inside a logarithm can be expanded to the front of the expression using the third law of logarithms. The third law of logarithms states that the logarithm of a power of  [tex]x[/tex]  is equal to the exponent of that power times the logarithm of  [tex]x[/tex]

[tex](log_b(x^n)=n*log_b(x))[/tex]

Now let's implement this with the values we know.

[tex]x*log(10)=3[/tex]

The logarithm base 10 of 10 is 1.

[tex]x*1=3[/tex]

[tex]x=3[/tex]