Respuesta :

Answer:

a)  x² +9

b) x⁴ + 2 x² + 1

Step-by-step explanation:

a) (x+3 i)(x− 3 i)

   = x² - (3 i ) x + (3 i ) x - (3 i)²

   = x² - 9 i²                       ∵ i² = -1

   = x² - 9 (-1)

   = x² +9

b) (x+i)²(x-i)²

   = (x² + i² + 2 x i)(x² + i² - 2 x i)

   = ((x² -1 )+ 2 x i)((x² -1) - 2 x i)

using identity

   (a + b)(a - b) = a² - b²

   = (x² -1)² - (2 x i)²

   = x⁴ + 1 - 2x² - 4x² i²

   = x⁴ + 1 - 2 x² + 4 x²

   = x⁴ + 2 x² + 1

lucic

The expressions in standard form are x²+9 and x⁴+x²+x³i-xi+1

Step-by-step explanation:

The question requires you to write (x+3i)(x− 3i) in standard form

(x+3i)(x− 3i)-----------------------------distribute

x(x-3i)+3i(x-3i)----------------------open brackets

x*x-x*3i+3i*x-3i*3i

x²-3ix+3ix--9

x²+9

b) (x+i)²(x-i)²

(x+i)²= x(x+i)+i(x+i)

(x+i)²=x²+xi+xi+i²

(x+i)²=x²+2xi-1

and

(x-i)²= (x-i)(x-i)

(x-1)²=x(x-i)-i(x-i)

(x-1)²=x²-xi-xi-1

(x-1)²=x²-2xi-1

Then

(x²+2xi-1)(x²-2xi-1) will be

x²(x²-xi-1)+2xi(x²-2xi-1)-1(x²-xi-1)

x⁴-x³i-x²+2x³i+4x²-2xi - x²+xi+1

x⁴-x²-x²-x³i+2x³i+4x²-x²-2xi+xi+1

x⁴-2x²+x³i+3x²-xi+1

x⁴+x²+x³i-xi+1

Learn More

  • Imaginary numbers: https://brainly.com/question/12993857

Keywords: standard form, expressions, imaginary numbers

#LearnwithBrainly