Write each of the following quadratic expressions as a product of linear factors. Verify that the factored form is equivalent.a)x²+12x+27b)x²-16c)x²+16d)x²+4x+5

Respuesta :

Answer:

(a) (x+3) (x+9)

(b) (x+4) (x-4)

(c) (x-4i) (x+4i)

(d) (-2+i) (-2-i)      

Step-by-step explanation:

We have given the quadratic expressions and we have to write these expressions in factor form

(a) [tex]x^2+12x+27[/tex]

It can be written as [tex]x^2+9x+3x+27[/tex]

[tex]x(x+9)+3(x+9)[/tex]

Now taking (x+9) as common

[tex](x+9)(x+3)[/tex]

(b) [tex]x^2-16[/tex]

We know the algebraic equation [tex]a^2-b^2=(a+b)(a-b)[/tex]

[tex]x^2-16=x^2-4^2=(x+4)(x-4)[/tex]

(c) [tex]x^2+16=(x-4i)(x+4i)[/tex]

(d) [tex]x^2+4x+5[/tex]

It can be written as [tex](-2+i)(-2-i)[/tex]