Answer:
(a) (x+3) (x+9)
(b) (x+4) (x-4)
(c) (x-4i) (x+4i)
(d) (-2+i) (-2-i)
Step-by-step explanation:
We have given the quadratic expressions and we have to write these expressions in factor form
(a) [tex]x^2+12x+27[/tex]
It can be written as [tex]x^2+9x+3x+27[/tex]
[tex]x(x+9)+3(x+9)[/tex]
Now taking (x+9) as common
[tex](x+9)(x+3)[/tex]
(b) [tex]x^2-16[/tex]
We know the algebraic equation [tex]a^2-b^2=(a+b)(a-b)[/tex]
[tex]x^2-16=x^2-4^2=(x+4)(x-4)[/tex]
(c) [tex]x^2+16=(x-4i)(x+4i)[/tex]
(d) [tex]x^2+4x+5[/tex]
It can be written as [tex](-2+i)(-2-i)[/tex]