Answer:
[tex]\log_{3}(25) = \frac{\log_{10}(25)}{\log_{10}(3)} = 2.93[/tex]
Step-by-step explanation:
We can use this expression to change the base of a logarithm from b to d.
[tex]\log_{b}(x) = \frac{\log_{d}(x)}{\log_{d}(b)}[/tex]
So, to write [tex]\log_{3}(25)[/tex] as base 10, we can use this formula.
[tex]\log_{b}(x) = \frac{\log_{d}(x)}{\log_{d}(b)}[/tex]
[tex]\log_{3}(25) = \frac{\log_{10}(25)}{\log_{10}(3)} = 2.93[/tex]