Respuesta :
Answer:
a)[tex]\lambda= \frac{2hx}{d}[/tex]
b)[tex]\lambda= \frac{4hx}{d}[/tex]
Explanation:
a)Regular destructive two-slit interference equations apply
therefore, we can write
[tex]dsin\theta = (m+0.5)\lambda[/tex]
[tex]x\frac{h}{d} = m\lambda+0.5\lambda[/tex]
[tex]\frac{hx}{d}=0.5\lambda[/tex]
[tex]\lambda= \frac{2hx}{d}[/tex]
b) Regular constructive two-slit interference equations apply
therefore, we can write
[tex]dsin\theta = m\lambda[/tex]
[tex]2x\frac{h}{d}=0.5\lambda[/tex]
[tex]\lambda= \frac{4hx}{d}[/tex]
a. The maximum wavelength that will interfere destructively is [tex]\lambda=\frac{2hx}{d}[/tex]
b. The maximum wavelength that will interfere constructively is [tex]\lambda=\frac{4hx}{d}[/tex]
Given the following data:
- Wavelength = [tex]\lambda[/tex]
- Distance, d = x meters.
- m = 0
a. To determine the maximum wavelength that will interfere destructively, we would apply an interference experiment formula:
The interference experiment formula.
Mathematically, an interference experiment is given by this formula:
[tex]dsin \theta =m \lambda[/tex]
Where:
- d is the distance between slits.
- m is the order of fringe.
- [tex]\lambda[/tex] is the wavelength.
- [tex]\theta[/tex] is the angle between bright fringe.
For a destructive two-slit interference, we have:
[tex]dsin \theta =(m+ \frac{1}{2} ) \lambda[/tex]
Note: From the diagram the value of [tex]sin \theta[/tex] is [tex]\frac{h}{d}[/tex].
Substituting the given parameters into the formula, we have;
[tex]x\frac{h}{d} =(0+ \frac{1}{2} ) \lambda\\\\x\frac{h}{d} =\frac{1}{2} \lambda\\\\\lambda d = 2hx\\\\\lambda=\frac{2hx}{d}[/tex]
b. To determine the maximum wavelength that will interfere constructively:
[tex]2x\frac{h}{d} =(0+ \frac{1}{2} ) \lambda\\\\2x\frac{h}{d} =\frac{1}{2} \lambda\\\\\lambda d = 2hx\\\\\lambda=\frac{4hx}{d}[/tex]
Read more on wavelength here: https://brainly.com/question/14702686
