Answer:
7661.06 m/s
Explanation:
R = Radius of Earth = [tex]6.38\times 10^6\ m[/tex]
h = Distance from the Earth = 420000 m
G = Gravitational constant = [tex]6.674\times 10^{-11} N m^2/kg^2[/tex]
M = Mass of Earth = [tex]5.98\times 10^{24}\ kg[/tex]
[tex]V=\sqrt{g{\frac{R^2}{R + h}}}\\\Rightarrow V=\sqrt{\frac{GM}{R^2}{\frac{R^2}{R + h}}}\\\Rightarrow V=\sqrt{\frac{6.674\times 10^{-11}\times 5.98\times 10^{24}}{(6.38\times 10^6)^2}{\frac{(6.38\times 10^6)^2}{6.38\times 10^6 + 420000}}}\\\Rightarrow V=7661.06\ m/s[/tex]
The orbital speed of the satellite is 7661.06 m/s