Answer:
[tex]x_1=\dfrac{3-i\sqrt{23}}{4}\\ \\x_2=\dfrac{3+i\sqrt{23}}{4}[/tex]
Step-by-step explanation:
Given:
Quadratic equation [tex]2x^2-3x+4=0[/tex]
Find: [tex]x[/tex]
Solution:
1. [tex]a=2,\ b=-3,\ c=4[/tex]
Find the discriminant
[tex]D=b^2-4ac\\ \\=(-3)^2-4\cdot 2\cdot 4\\ \\=9-32\\ \\=-23[/tex]
Note that [tex]i^2=-1,[/tex] then
[tex]D=-23=23i^2[/tex]
Find x:
[tex]x_{1,2}=\dfrac{-b\pm \sqrt{d}}{2a}\\ \\x_1=\dfrac{-(-3)-\sqrt{23i^2}}{2\cdot 2}=\dfrac{3-i\sqrt{23}}{4}\\ \\x_2=\dfrac{-(-3)+\sqrt{23i^2}}{2\cdot 2}=\dfrac{3+i\sqrt{23}}{4}[/tex]