Answer:
[tex]y=-\frac{x}{2}-34[/tex]
Step-by-step explanation:
Hello there, I can help with this one
Step 1
define two points
x-intercept=-68,this means that when the line intercepts x (is when the value of y = 0)it is in the point (-68,0)
Hence, we have a point
let
P1(-68,0)
y-intercept=-34,this means that when the line intercepts y (this happens when the value of x = 0)it is in the point (0,-34)
P2(0,-34)
Step two
find the slope using
[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
[tex]P1(x_{1},y_{1})= (-68,0)\\P2(x_{2},y_{2})= (0,-34)\\\\m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\m=\frac{-34-0}{0-(-68)}\\m=\frac{-34}{68}\\ m=-\frac{1}{2}[/tex]
Step three
find the equation of the line using
[tex]y-y_{1}=m(x-x_{1})\\ where\\(x_{1},y_{1})\ is\ a\ known\ point\\[/tex]
put the values of P1 and m
P1(-68,0),m=-1/2
[tex]y-0=-\frac{1}{2} (x-(-68))\\y=-\frac{x}{2}-\frac{68}{2}\\y=-\frac{x}{2}-34\\[/tex]
I hope it helps, have a nice day