Answer:
[tex]F_{net} =165.87\ N[/tex]
Explanation:
given,
angle of inclination with the horizontal = 8.5°
force of gravity = 1225 N
normal force on car = 1210 N
frictional force = 15.2 N
net force = ?
equating horizontal forces
[tex]F_x = f - mg sin \theta[/tex]
[tex]F_x = 15.2 - 1225 sin 8.5^0[/tex]
F_x = -165.87 N
equating vertical forces
[tex]F_y = N - mg cos\theta[/tex]
[tex]F_y = 1210 - 1225 cos 8.5^0[/tex]
F_y = -1.54 N
net force
[tex]F_{net} = \sqrt{F_x^2+F_y^2}[/tex]
[tex]F_{net} = \sqrt{-165.87^2+-1.54^2}[/tex]
[tex]F_{net} = \sqrt{27515}[/tex]
[tex]F_{net} =165.87\ N[/tex]