In a later chapter we will be able to show, under certain assumptions, that the velocity v(t) of a falling raindrop at time t is v(t) = vT(1 − e−gt/vT) where g is the acceleration due to gravity and vT is the terminal velocity of the raindrop. (a) Find lim t→[infinity] v(t).

Respuesta :

Answer:

[tex]\lim_{t \to \infty} v(t) =vT[/tex]

Explanation:

Using distributive propierty:

[tex]v(t)=vT(1-\frac{e^{-gt} }{vT} )=vT-e^{-gt}[/tex]

So:

[tex]\lim_{t\to \infty} vT-e^{-gt}[/tex]

The limit of the sum of two functions is equal to the sum of their limits, therefore:

[tex]\lim_{t\to \infty} vT-e^{-gt} = \lim_{t\to \infty} vT -  \lim_{t\to \infty} e^{-gt}[/tex]

The limit of a constant function is the constant, hence:

[tex]\lim_{t\to \infty} vT=vT[/tex]

Now, let's solve the other limit:

[tex]\lim_{t\to \infty} e^{-gt}=e^{ \lim_{t \to \infty} -gt}[/tex]

The limit of a constant times a function is equal to the product of the constant and the limit of the function, so:

[tex]\lim_{t \to \infty} -gt}=-g\lim_{t \to \infty} t}=-g(\infty)[/tex]

[tex]-g(\infty)=-\infty[/tex]

Therefore:

[tex]e^{(-\infty)} =0[/tex]

Finally:

[tex]\lim_{t\to \infty} vT-e^{-gt}=vT-0=vT[/tex]

The velocity function for the drop of water will be  [tex]Lim_{t- > oo}\ v(t)=vT[/tex]

What is velocity?

The velocity of an object is the rate of change of its position with respect to a frame of reference

Using distributive propierty:

[tex]v(t0=vT(1-\dfrac{e^{-gt}}{vt})=vT-ew^{-gt}[/tex]

So:

[tex]lim_{t- > oo}\ vT-e^{-gt}[/tex]

The limit of the sum of two functions is equal to the sum of their limits, therefore:

[tex]lim_{t- > oo}\ vT-e^{-gt}=lim_{t- > oo}vT-lim_{t- > oo}\ e^{-gt}[/tex]

The limit of a constant function is the constant, hence:

[tex]lim_{t- > oo}\ vT =vT[/tex]

Now, let's solve the other limit:

[tex]lim_{t- > oo}\ e^{-gt}=e^{lim_{t- > oo\ -gt}[/tex]

The limit of a constant times a function is equal to the product of the constant and the limit of the function, so:

[tex]-g(oo)=-oo[/tex]

Therefore:

[tex]e^{(-oo)}=0[/tex]

Finally:

[tex]Lim_{t- > oo}\ v(t)=vT[/tex]

Hence the velocity function for the drop of water will be  [tex]Lim_{t- > oo}\ v(t)=vT[/tex]

To know more about velocity follow

https://brainly.com/question/25749514