When the engineer first sees the car, the locomotive is 100m from the crossing and its speed is 30m/s. If the engineer reaction time is 0.47 s what should the magnitude of the minimum deceleration to avoid an accident?

Respuesta :

Answer:

The deceleration must have the engineer to avoid the accident is

a=-5.238 [tex]\frac{m}{s^{2} }[/tex]

Explanation:

[tex]x_{0}=100m\\v_{0}=30 \frac{m}{s} \\t=0.47 s[/tex]

While the engineer reacts the train continue moving so

[tex]x_{f} = v*t= 30\frac{m}{s} *0.47s= 14.1 m[/tex]

[tex]x_{t}=  x_{o}+x_{f}\\x_{t}=  100m-14.1m=85.9m[/tex]

Now the final velocity have to be zero so using equation can find deceleration

[tex]V_{f} ^{2} =V_{o} ^{2}+2*a*x_{f}\\  0= V_{o} ^{2}+2*a*x_{f}\\a=-\frac{V_{o} }{2*x_{f}}\\a=-\frac{(30\frac{m}{s}) ^{2} }{2*85.9m} \\a=-5.238 \frac{m }{s^{2} } } \\[/tex]