Respuesta :

Answer:

5.77

Step-by-step explanation:

In the triangle ABC, AD is perpendicular to BC and D is the midpoint of BC.  

Therefore, if all the sides of triangle ABC are 'a', then the length of CD will be  a/2.

Now, as ΔADC is a right triangle, then AD² +DC² =AC²

⇒ AD² = AC²- DC² =a²- ([tex]\frac{a}{2}[/tex])² = [tex]\frac{3a^{2} }{4}[/tex]  

⇒ [tex]\frac{3a^{2} }{4}[/tex]  =10² {Since length of AD is given to be 10}

a²=[tex]\frac{100*4}{3}[/tex] = 133.333

a = 11.547

Hence, the length of CD = a/2 = 5.77. (Answer)