Answer:
10.4205
Step-by-step explanation:
Let's find first the Expectation of the random variable X, E(X)
The Expectation of X has the following formula
[tex]\large E(X)=\sum x_kp(x_k)[/tex]
where
[tex]\large x_k[/tex] values of the discrete random variable
[tex]\large p(x_k)[/tex] probabilities of the values
[tex]\large E(X)=2*0.25+3*0.4+4*0.04+5*0.01+6*0.3=\bf 3.71[/tex]
To determine the variance of the random variable X, we will use the formula
[tex]\large Var(X)=E((X-E(X))^2)[/tex]
So,
[tex]\large Var(X)=(2-3.71)^2+(3-3.71)^2+(4-3.71)^2+(5-3.71)^2+(6-3.71)^2[/tex]
and the Variance is
[tex]\large \boxed{Var(X)=10.4205}[/tex]