Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

Let x, y ∈ R.

If x and y are both positive, then [tex]\sqrt{x+y}\neq \sqrt{x}+\sqrt{y}[/tex]

Suppose that

[tex]\sqrt{x+y}=\sqrt{x}+\sqrt{y}[/tex]

Square both sides of this equation:

[tex](\sqrt{x+y})^2=(\sqrt{x}+\sqrt{y})^2\\ \\x+y=(\sqrt{x})^2+2\sqrt{x}\sqrt{y}+(\sqrt{y})^2\\ \\x+y=x+2\sqrt{x}\sqrt{y}+y\\ \\2\sqrt{x}\sqrt{y}=0[/tex]

Then

[tex]\sqrt{x}=0\ \text{or}\ \sqrt{y}=0\\ \\x=0\ \text{or}\ y=0[/tex]

But x and y are both positive, so the assumption is false