Answer:
Step-by-step explanation:
[tex]x,\ y,\ z-\text{three numbers}\\\\\left\{\begin{array}{ccc}(x+2z)-y=1&(1)\\z+2x=3&(2)\\x+3y+z=18&(3)\end{array}\right\\\\(2)\\z+2x=3\qquad\text{subtract}\ 2x\ \text{from both sides}\\z=3-2x\qquad(*)\\\\\text{Substitute}\ (*)\ \text{to (1) and (3)}\\\\\left\{\begin{array}{ccc}x+2(3-2x)-y=1&\text{use the distributive property}\\x+3y+(3-2x)=18\end{array}\right[/tex]
[tex]\left\{\begin{array}{ccc}x+(2)(3)+(2)(-2x)-y=1\\x+3y+3-2x=18&\text{subtract 3 from both sides}\end{array}\right\\\left\{\begin{array}{ccc}x+6-4x-y=1&\text{subtract 6 from both sides}\\(x-2x)+3y=15\end{array}\right\\\left\{\begin{array}{ccc}(x-4x)-y=-5\\-x+3y=15\end{array}\right\\\left\{\begin{array}{ccc}-3x-y=-5&\text{multiply both sides by 3}\\-x+3y=15\end{array}\right[/tex]
[tex]\underline{+\left\{\begin{array}{ccc}-9x-3y=-15\\-x+3y=15\end{array}\right}\qquad\text{add all sides of the equations}\\.\qquad-10x=0\qquad\text{divide both sides by (-10)}\\.\qquad\boxed{x=0}\\\\\text{Put it to the second equation:}\\-0+3y=15\\3y=15\qquad\text{divide both sides by 3}\\\boxed{y=5}\\\\\text{Put the value of}\ x\ \text{to}\ (*):\\\\z=3-2(0)\\\boxed{z=3}[/tex]