Respuesta :

Answer:

[tex]x = -7 [/tex]

[tex]y = - 12[/tex]

Step-by-step explanation:

The given system is:

4x-3y=8

5x-2y=-11

We make x the subject in the top equation to get:

[tex]x = \frac{3}{4}y + 2[/tex]

Plug this expression for x in the bottom equation to get

[tex]5( \frac{3}{4}y + 2) - 2y= - 11[/tex]

We expand to obtain

[tex] \frac{15}{4} y + 10 - 2y = - 11[/tex]

Multiply through by 4

[tex]15y + 40 - 8y = - 44[/tex]

Group similar terms

[tex]15y - 8y = - 44 - 40[/tex]

[tex]7y = - 84[/tex]

[tex]y = - \frac{84}{7} =-12 [/tex]

This means

[tex]x = -12\times \frac{3}{4} + 2[/tex]

[tex]x = - 7[/tex]