Answer:
The halflife of goo is 12 minutes
Step-by-step explanation:
Use formula
[tex]A=A_0\cdot \left(\dfrac{1}{2}\right)^{\frac{t}{k}}[/tex]
In your case,
[tex]A_0=292\\ \\A=9.125\\ \\t=60[/tex]
Find k:
[tex]9.125=292\cdot\left(\dfrac{1}{2}\right)^{\frac{60}{k}}\\ \\ \left(\dfrac{1}{2}\right)^{\frac{60}{k}}=\dfrac{9.125}{292}\\ \\ \left(\dfrac{1}{2}\right)^{\frac{60}{k}}=0.03125\\ \\ \left(\dfrac{1}{2}\right)^{\frac{60}{k}}=\dfrac{1}{32}\\ \\ \left(\dfrac{1}{2}\right)^{\frac{60}{k}}= \left(\dfrac{1}{2}\right)^{5}\\ \\\dfrac{60}{k}=5\\ \\5k=60\\ \\k=12[/tex]
The halflife of goo is 12 minutes