Write a recursive formula for each explicit formula
and find the first term of the sequence.

38. an = 108 -n

40.) a = 35 + 52n​

Respuesta :

frika

Answer:

38. [tex]a_1=107,\ a_n=a_{n-1}-1[/tex]

40. [tex]a_1=87,\ a_n=a_{n-1}+52[/tex]

Step-by-step explanation:

38. Given explicit formula:

[tex]a_n=108-n[/tex]

When [tex]n=1,[/tex] then [tex]a_1=108-1=107[/tex]

When [tex]n=2,[/tex] then [tex]a_2=108-2=106[/tex]

When [tex]n=3,[/tex] then [tex]a_3=108-3=105[/tex]

When [tex]n=4,[/tex] then [tex]a_4=108-4=104[/tex]

and so on

You can see that each next number is 1 less than previous number, so the recursive formula is

[tex]a_n=a_{n-1}-1[/tex]

40. Given explicit formula:

[tex]a_n=35+52n[/tex]

When [tex]n=1,[/tex] then [tex]a_1=35+52\cdot 1=87[/tex]

When [tex]n=2,[/tex] then [tex]a_2=35+52\cdot 2=139[/tex]

When [tex]n=3,[/tex] then [tex]a_3=35+52\cdot 3=191[/tex]

When [tex]n=4,[/tex] then [tex]a_4=35+52\cdot 4=243[/tex]

and so on

You can see that each next number is 52 more than previous number, so the recursive formula is

[tex]a_n=a_{n-1}+52[/tex]