Answer:
the length and the width are inversely proportional to each other ([tex]l=\frac{36}{w}[/tex] or [tex]w=\frac{36}{l}[/tex])
Step-by-step explanation:
Let
l units = length of the rectangle,
w units = width of the rectangle.
The area of the rectangle is
[tex]\text{Area}=\text{Length}\cdot \text{Width}[/tex]
A rectangle has an area of 36 square units, so
[tex]l\cdot w=36[/tex]
Complete the table with some values of l and w that fit the previous formula:
[tex]\begin{array}{ccc}\text{Length}&\text{Width}&\text{Area}\\ \\36&1&36\cdot 1=36\ un^2.\\18&2&18\cdot 2=36 \ un^2.\\12&3&12\cdot 3=36\ un^2.\\ 9&4&9\cdot 4=36\ un^2.\\l&w&l\cdot w=36 \ un^2.\end{array}[/tex]
As you can see, the length and the width are inversely proportional to each other ([tex]l=\frac{36}{w}[/tex] or [tex]w=\frac{36}{l}[/tex])