Answer:
A) 7
B) 2.588
C) 2.3151
Step-by-step explanation:
We are given the following data set:
2, 5, 6, 7, 9
Formula:
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
Mean = [tex]\displaystyle\frac{29}{5} = 5.8[/tex]
a) Range
= Highest value - Lowest Value = 9 - 2 = 7
b) Sample standard deviation
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
Sum of squares = 14.44 + 0.64 + 0.04 + 1.44 + 10.24 = 26.8
[tex]SS.D = \sqrt{\frac{26.8}{4}} = 2.588[/tex]
c) Population standard deviation
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
Sum of squares = 14.44 + 0.64 + 0.04 + 1.44 + 10.24 = 26.8
[tex]PS.D = \sqrt{\frac{26.8}{5}} = 2.3151[/tex]