Respuesta :
Answer:
[tex]-\dfrac{1}{2ac}[/tex]
Step-by-step explanation:
Given:
[tex]\dfrac{-32abc}{64a^2bc^2}[/tex]
Reduce this fraction.
Work with numbers and different letters separately:
1. Numbers:
[tex]\dfrac{-32}{64}=-\dfrac{32}{32\cdot 2}=-\dfrac{1}{2}[/tex]
2. Letter a:
[tex]\dfrac{a}{a^2}=\dfrac{a}{a\cdot a}=\dfrac{1}{a}[/tex]
3. Letter b:
[tex]\dfrac{b}b}=1[/tex]
4. Letter c:
[tex]\dfrac{c}{c^2}=\dfrac{c}{c\cdot c}=\dfrac{1}{c}[/tex]
Hence,
[tex]\dfrac{-32abc}{64a^2bc^2}=-\dfrac{1}{2}\cdot \dfrac{1}{a}\cdot \dfrac{1}{c}=-\dfrac{1}{2ac}[/tex]
Answer:
-1/(2ac)
Step-by-step explanation:
-32/64=-1/2
the b's cancel each other out,
leaving you with ac on the denominator.