Answer:
See explanation
Step-by-step explanation:
The first function is [tex]\frac{1}{4}(8x+16)[/tex]
You probably want to expand so we need to apply the distributive property:
This implies that:
[tex]\frac{1}{4}(8x+16)=\frac{1}{4}*8x+\frac{1}{4}*16[/tex]
[tex]\implies \frac{1}{4}(8x+16)=2x+4[/tex]
The second function is [tex]\frac{1}{3}(3p+12)[/tex].
We again apply the distributive property to get:
[tex]\frac{1}{3}(3p+12)=\frac{1}{3}*3p+\frac{1}{3}*12[/tex]
[tex]\implies \frac{1}{3}(3p+12)=p+4[/tex]
The third one is [tex]\frac{1}{2}(14k-10)[/tex]
We expand using the distributive property to get:
[tex]\frac{1}{2}(14k-10)=\frac{1}{2}*14k-\frac{1}{2}*10[/tex]
[tex]\implies \frac{1}{2}(14k-10)=7k-5[/tex]
The fourth is [tex]\frac{1}{8}(8a-24)[/tex]
We expand to get:
[tex]\frac{1}{8}(8a-24) =\frac{1}{8}*8a-\frac{1}{8}*24[/tex]
[tex]\frac{1}{8}(8a-24) =a-3[/tex]
The fifth one is [tex]\frac{1}{2}(4p+1)[/tex]
Expand to get:
[tex]\frac{1}{2}(4p+1)=\frac{1}{2}*4p+\frac{1}{2}*1[/tex]
[tex]\frac{1}{2}(4p+1)=2p+\frac{1}{2}[/tex]