Answer:
The heaviest box that can be moved will have a mass of 81.36 kg
Solution:
As per the question:
Angle, [tex]\theta = 25^{\circ}[/tex]
Force, F = 750 N
Static Friction Coefficient, [tex]\mu_{s} = 0.61[/tex]
Now,
The acceleration of the box is zero.
The net force, [tex]F_{net}[/tex] that acts on the box is zero, thus:
[tex]Fcos25^{\circ} = \mu_{s}mg + \mu_{s}Fsin25^{\circ}[/tex]
[tex]m = \frac{Fcos25^{\circ} - \mu_{s}Fsin25^{\circ}}{\mu_{s}\times g}[/tex]
[tex]m = \frac{750cos25^{\circ} - 750sin25^{\circ}}{0.61\times 9.8} = 81.36\ kg[/tex]