Answer:
0.3032
Step-by-step explanation:
3 parameters [n,x,p] are given. We simply need the formula for binomial distribution and put in the values and solve.
The binomial distribution formula:
[tex]P(X=x)=nCx*p^{x}*(1-p)^{n-x}[/tex]
Where nCx is the combination formula.
Now, we put the numbers and solve:
[tex]P(X=x)=nCx*p^{x}*(1-p)^{n-x}\\P(X=3)=6C3*(0.55)^{3}*(1-0.55)^{6-3}\\P(X=3)=\frac{6!}{(6-3)!*3!}(0.55)^3*(0.45)^3\\P(X=3)=20(0.55)^3*(0.45)^3\\P(X=3)=0.3032[/tex]