Answer:
the required quantity of solution of 10% is 40 ml
the required quantity of solution of 25% = 80 ml
Explanation:
let the required quantity of solution of 10% be x
and quantity of solution of 25% be (120 - x) ml
Hence, quantity of acid in x ml of 10 percentage solution is[tex] x\times 10% [/tex]and similarly for 25% solution be [tex]( 120-x) \times 25\%[/tex]
therefore total amount of acid is [tex]x\times 10\% + ( 120-x) \times 25\%[/tex]
we need total solution of 120 ml of 20% so we have
[tex]x\times 10\% + ( 120-x) \times 25\% = 120 \times 20\%[/tex]
after solving we get
[tex]\frac{x}{10} -\frac{x}{4} = 24 - \frac{120}{4}[/tex]
solving for x we get
x = 40
therefore ,
the required quantity of solution of 10% is 40 ml
the required quantity of solution of 25% = 80 ml