Answer:
Q(-1,6)
Step-by-step explanation:
The midpoint rule is given as:
[tex]M(x,y)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2} )[/tex]
We have that point M is the midpoint of PQ and M(5,-2) and P(11,-10).
We substitute x=5, y=-2, [tex]x_1=11[/tex] and [tex]x_1=-10[/tex].
[tex]M(5,-2)=(\frac{11+x_2}{2},\frac{-10+y_2}{2} )[/tex]
This implies that:
[tex]5=\frac{11+x_2}{2}[/tex]
[tex]\implies 10=11+x_2[/tex]
[tex]\implies x_2=-1[/tex]
[tex]-2=\frac{-10+y_2}{2}[/tex]
[tex]\implies -4=-10+y_2[/tex]
[tex]\implies y_2=6[/tex]
Therefore the coordinates of Q are (-1,6)