Answer:
the terminal velocity v_t= 202.96 m/s≅203 m/s
Explanation:
The expression for the terminal velocity
[tex]v_t= \sqrt{\frac{2mg}{\rho AC_d} }[/tex]
here, C_d is the drag coefficient for the cylinder is 1.15
The surface density of the air at 20°C is
ρ_surface = 1.2041 kg/m^3
the density of air at an altitude of 39000 m
ρ= 4.3/100×39000 = 0.05177 kg/m^3
now substitute these values in equation above
we get
[tex]v_t= \sqrt{\frac{2\times90\times9.81}{0.05177\times0.72\times1.15} }[/tex]
v_t= 202.96 m/s≅203 m/s
the terminal velocity v_t= 202.96 m/s≅203 m/s