Respuesta :
Answer: The value of [tex]K_c[/tex] for the reaction is [tex]6.005\times 10^{-6}[/tex]
Explanation:
We are given:
Initial moles of [tex]NH_3=0.0150mol[/tex]
Initial moles of [tex]O_2=0.0150mol[/tex]
Volume of the container = 1.00 L
Molarity of the solution = [tex]\frac{\text{Number of moles}}{\text{Volume of container}}[/tex]
[tex][NH_3]_i=\frac{0.0150}{1.00}=0.0150M[/tex]
[tex][O_2]_i=\frac{0.0150}{1.00}=0.0150M[/tex]
The given chemical equation follows:
[tex]4NH_3(g)+3O_2(g)\rightarrow 2N_2(g)+6H_2O(g)[/tex]
Initial: 0.0150 0.0150
At eqllm: 0.0150-4x 0.0150-3x 2x 6x
The expression of [tex]K_c[/tex] for above equation follows:
[tex]K_c=\frac{[N_2]^2[H_2O]^6}{[NH_3]^4[O_2]^3}[/tex] .......(1)
We are given:
Equilibrium concentration of [tex]N_2=1.96\times 10^{-3}[/tex]
Equating the equilibrium concentrations of nitrogen, we get:
[tex]2x=1.96\times 10^{-3}\\\\x=0.98\times 10^{-3}M[/tex]
Calculating the equilibrium concentrations:
Concentration of [tex]NH_3=(0.0150-4x)=0.0150-4(0.00098)=0.01108M[/tex]
Concentration of [tex]O_2=(0.0150-3x)=0.0150-3(0.00098)=0.01206M[/tex]
Concentration of [tex]N_2=2x=2(0.00098)=0.00196M[/tex]
Concentration of [tex]H_2O=6x=6(0.00098)=0.00588M[/tex]
Putting values in expression 1, we get:
[tex]K_c=\frac{(0.00196)^2\times (0.00588)^6}{(0.01108)^4\times (0.01206)^3}\\\\K_c=6.005\times 10^{-6}[/tex]
Hence, the value of [tex]K_c[/tex] for the reaction is [tex]6.005\times 10^{-6}[/tex]
Kc is the ratio of equilibrium constant of product to the reactants. The value of Kc for the reaction is [tex]\rm Kc =6.005\times10^-^6[/tex]
What is Kc?
Kc is the ratio of the equilibrium constant of the product to the equilibrium constant of the reactants.
Now, The reaction is
[tex]\rm 4 NH_3(g) +3 O_2 (g) <--->2 N_2(g) + 6 H_2O(g)[/tex]
The given data is
Initial moles of [tex]\rm NH_3[/tex] is 0.0150 mol
Initial moles of [tex]\rm O_2[/tex] is 0.0150 mol
Volume of container is 1.00−L
Step1: find the molarity of the solution
[tex]\rm M = \dfrac{n}{V}\\\\\rm NH_3 = \dfrac{0.0150 mol }{1.00L }=0.0150 \;M\\\\\\\rm O_2 = \dfrac{0.0150 mol }{1.00L }=0.0150 \;M[/tex]
Step2: Making the ICE table:
4 moles of ammonia and 3 moles of oxygen is used to prepare 2 moles of nitrogen and 6 moles of water.
Thus, we are reducing the moles from the reactants
[tex]\rm 4 NH_3(g) +3 O_2 (g) <--->2 N_2(g) + 6 H_2O(g)[/tex]
Initial: 0.0150 0.0150
At equilibrium: 0.0150-4x 0.0150-3x 2x 6x
Equilibrium constant of [tex]\rm N_2\;\;is\;\; 1.96 \times 10^-^3 M[/tex]
So, [tex]\rm N_2[/tex] is 2x
[tex]\rm 2x = 1.96 \times 10^-^3\;M\\\\\rm x = 0.98\times 10^-^3\;M\\[/tex]
Step3: Calculating the equilibrium concentration
Concentration of [tex]\rm NH_3[/tex] = [tex]0.0150-4x = 0.0150 - 4(0.00098) = 0.01108\;M[/tex]
Concentration of [tex]\rm O_2[/tex] = [tex]0.0150-3x = 0.0150 - 3(0.00098) = 0.01206\;M[/tex]
Concentration of [tex]N_2 = 2x = 2(0.00098) = 0.00196\;M[/tex]
Concentration of [tex]H_2O = 6x= 6(0.00098) = 0.00588\;M[/tex]
Step4: Calculating the Kc
[tex]\rm Kc = \dfrac{[N_2]^2[H_2O]^6}{[NH_3]^4[O_2]^3}[/tex]
[tex]\rm Kc = \dfrac{[0.00196]^2\;[0.00588]^6}{[0.01108]^4\;[0.01206]^3} =6.005\times10^-^6[/tex]
Thus, the value of [tex]\rm Kc =6.005\times10^-^6[/tex]
Learn more about Kc, here:
https://brainly.com/question/13450698