Answer:
At low pressure- [tex]\mu_{k}=0.02315[/tex]
At high pressure- [tex]\mu_{k}=0.00445[/tex]
Explanation:
Initial speed, [tex]V_{i}=3.3 m/s[/tex]
Final speed, [tex]V_{f}=3.3/2= 1.65 m/s[/tex]
Net horizontal force due to rolling friction [tex]F_{net}=\mu_{k}[/tex] mg where m is mass, g is acceleration due to gravity, [tex]\mu_{k}[/tex] is coefficient of rolling friction
From kinematic relation, [tex]V_{f}^{2}- V_{i}^{2}=2ad[/tex]
For each tire,
[tex]V_{f}^{2}- V_{i}^{2}=2\mu_{k}gd[/tex]
Making [tex]\mu_{k}[/tex] the subject
[tex]\mu_{k}=\frac {V_{f}^{2}- V_{i}^{2}}{2gd}[/tex]
Under low pressure of 40 Psi, d=18 m
[tex]\mu_{k}=\frac {1.65^{2}- 3.3^{2}}{2*9.8*18}=-0.02315[/tex]
Therefore, [tex]\mu_{k}=0.02315[/tex]
At a pressure of 105 Psi, d=93.7
[tex]\mu_{k}=\frac {1.65^{2}- 3.3^{2}}{2*9.8*93.7}=-0.00445[/tex]
Therefore, [tex]\mu_{k}=0.00445[/tex]