Answer:9.125 N
Explanation:
Given
Magnitude of Force [tex]F_1=8.60 N[/tex] at angle of [tex]55^{\circ}[/tex] above negative x axis
Magnitude of Force [tex]F_2=7 N[/tex] at angle of [tex]53.2^{\circ}[/tex] below negative x axis
[tex]\theta _1=180^{\circ}-55^{\circ}=125^{\circ}[/tex]
[tex]\theta _2=180^{\circ}+53.2^{\circ}=233.2^{\circ}[/tex]
Thus net force in x direction
[tex]F_x=F_1\cos \theta _1+F_2\cos \theta _2[/tex]
[tex]F_x=8.6\times \cos (125)+7\times \cos (233.2)[/tex]
[tex]F_x=-9.1251 N[/tex] towards negative x axis