Respuesta :
Answer:
Part A: 27.8 L; Part B: 0.500 mol
Explanation:
Part A
For an ideal gas, we can use the equation:
PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.
In the beggining:
P*48.0 = 1.90*RT
P/RT = 1.90/48.0
P/RT = 0.03958
For constants pressure and temperature, after 0.800 mol of gas leaks out: n = 1.90 - 0.800 = 1.10 mol
PV = 1.10*R*T
P/RT = 1.10/V
0.03958 = 1.10/V
V = 1.10/0.03958
V = 27.8 L
Part B
In the beginning
PV = nRT
P*70.0 = 2.00*RT
P/RT = 2.00/70.0
P/RT = 0.02857
After the gas leaked out:
PV = nRT
P*17.5 = nRT
P/RT = n/17.5
0.02857 = n/17.5
n = 0.500 mol
Answer:
A) [tex]V_2=27.8 L[/tex]
B) [tex]n_2=0.5 mol[/tex]
Explanation:
Part 1
Ideal gas equation:
[tex]P*V_1=n_1*R*T[/tex]
[tex]V_1=48 L[/tex]
[tex]n_1=1.9 mol[/tex]
P, T and R are constants.
[tex]\frac{P}{R*T}=\frac{n_1}{V_1}=\frac{1.9 mol}{48 L}=0.0396 mol/L[/tex]
Now:
[tex]n_2=1.9 mol - 0.8 mol=1.1 mol[/tex]
[tex]V_2=\frac{n_2}{P/R*T}[/tex]
[tex]V_2=\frac{1.1 mol}{0.0396 mol/L}=27.8 L[/tex]
Part 2
[tex]P*V_1=n_1*R*T[/tex]
[tex]V_1=70 L[/tex]
[tex]n_1=2 mol[/tex]
P, T and R are constants.
[tex]\frac{P}{R*T}=\frac{n_1}{V_1}=\frac{2 mol}{70 L}=0.0286 mol/L[/tex]
Now:
[tex]V_2=17.5 L[/tex]
[tex]n_2=V_2*\frac{P}{R*T}[/tex]
[tex]n_2=17.5 L*0.0286 mol/L=0.5 mol[/tex]