Given right triangle GYK, what is the value of tan(G)?

One-half
StartFraction StartRoot 3 EndRoot Over 2 EndFraction
StartFraction 2 StartRoot 3 EndRoot Over 3 EndFraction
StartRoot 3 EndRoot

Given right triangle GYK what is the value of tanG Onehalf StartFraction StartRoot 3 EndRoot Over 2 EndFraction StartFraction 2 StartRoot 3 EndRoot Over 3 EndFr class=

Respuesta :

Answer:

The value of tan(G) in the  right triangle GYK Is [tex]\sqrt{3}[/tex]

Step-by-step explanation:

Given

Measure of angle at [tex]G=60^{\circ}[/tex]

Measure of angle at [tex]Y=30^{\circ}[/tex]

Measure of angle at [tex]K=90^{\circ}[/tex]

To find:

[tex]\tan (G)=?[/tex]

Solution:

In trigonometry we know that

[tex]\tan G=\frac{\sin G}{\cos G}[/tex]

[tex]G=60^{\circ}[/tex]

So,

[tex]\sin (60)=\frac{\sqrt{3}}{2}[/tex]

[tex]\cos (60)=\frac{1}{2}[/tex]

Substituting in the formula we have,

[tex]\tan G=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}[/tex]

[tex]\tan G=\frac{\sqrt{3}}{2} \times \frac{2}{1}[/tex]

[tex]\tan G=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}[/tex]

[tex]\tan G=\sqrt{3}[/tex]

Result:

Thus the value of [tex]\tan G=\sqrt{3}[/tex]

Answer:

The answer is [tex]\sqrt{3[/tex]

Step-by-step explanation:

Tan(G) = opposite side

              adjacent side

Tan(G) = [tex]\frac{\sqrt{3} }{1}[/tex]

Tan(G) = [tex]\sqrt{3}[/tex]