Answer: 0.388
Step-by-step explanation:
According to Bayes' theorem:
[tex]P(steroids\:|\:positive) = \frac{P(positive\:|\:steroids)\times P(steroids)}{P(positive)}[/tex]
Whereby:
The probability of positive result given the use of steroid:
[tex]P(positive\:|\:steroids) = 1 - P(false\:negative) = 1 - 0.1 = 0.9[/tex]
The probability of Max using steroids: [tex]P(steroids) = 0.7\% = 0.007[/tex]
The probability of positive result (calculated using addition and multiplication rules):
[tex]P(positive)= P(positive\:\cap \:steroids) + P(positive\:\cap \:non-steroids)\\ =P(steroids)\times P(positive\:|\:steroids) + P(non-steroids)\times P(positive|non-steroids)\\= 0.007\times0.9+(1-0.007)\times 0.01 = 0.01623[/tex]
As such,
[tex]P(steroids\:|\:positive) = \frac{0.9\times 0.007}{0.01623} \approx 0.388[/tex]