Answer:
[tex]\theta = 66.7 degree[/tex]
Explanation:
since force is applied downwards at some angle with the horizontal
so here we will have
[tex]F_n = mg + Fsin\theta[/tex]
now we know that the box will not move if applied force is balanced by frictional force on it
so we will have
[tex]Fcos\theta = \mu F_n[/tex]
[tex]F cos\theta = \mu (mg + F sin\theta)[/tex]
[tex]F(cos\theta - \mu sin\theta) = \mu mg[/tex]
[tex]F = \frac{\mu mg}{cos\theta - \mu sin\theta}[/tex]
so here we can say
[tex]cos\theta - \mu sin\theta > 0[/tex]
[tex]tan\theta = \frac{1}{\mu}[/tex]
[tex]\theta = tan^{-1}\frac{1}{\mu}[/tex]
[tex]\theta = tan^{-1}(\frac{1}{0.43})[/tex]
[tex]\theta = 66.7 degree[/tex]