Answer:
[tex]k_h=25.09\ ft/d[/tex]
[tex]k_v=20.5ft/d[/tex]
Explanation:
Given that
h₁= 22 ft ,k₁= 17 ft/d
h₂= 3.5 ft, k₂=99 ft/d
h₃=26 ft ,k₃=22 ft/d
Horizontal conductivity
[tex]k_h=\dfrac{k_1h_1+k_2h_2+k_3h_3}{h_1+h_2+h_3}[/tex]
Now by putting the values
[tex]k_h=\dfrac{17\times 22+3.5\times 99+26\times 22}{22+3.5+26}\ ft/d[/tex]
[tex]k_h=25.09\ ft/d[/tex]
Vertical conductivity
[tex]k_v=\dfrac{h_1+h_2+h_3}{\dfrac{h_1}{k_1}+\dfrac{h_2}{k_2}+\dfrac{h_3}{k_3}}[/tex]
[tex]k_v=\dfrac{22+3.5+26}{\dfrac{22}{17}+\dfrac{3.5}{99}+\dfrac{26}{22}}\ ft/d[/tex]
[tex]k_v=20.5ft/d[/tex]