Answer:
77 °C
Explanation:
This looks like a case where we can use Charles’ Law:
[tex]\dfrac{V_{1}}{T_{1}} =\dfrac{V_{2}}{T_{2}}[/tex]
Data:
V₁ = 580 mL; T₁ = 17 °C
V₂ = 700 mL; T₂ = ?
Calculations:
(a) Convert the temperature to kelvins
T₁ = (17 + 273.15) K = 290.15 K
(b) Calculate the temperature
[tex]\begin{array}{rcl}\dfrac{\text{580 mL}}{\text{290.15 K}} &=&\dfrac{\text{700 mL}}{T_{2}}\\\\\dfrac{\text{1.990}}{\text{1 K}} & = & \dfrac{700}{T_{2}}\\\\1.990T_{2} & = & \text{700 K}\\T_{2} & = & \textbf{350 K}\\\end{array}[/tex]
(c) Convert the temperature back to Celsius
T₂ = (350 – 273.15) °C = 77 °C