Respuesta :

znk

Answer:

77 °C  

Explanation:

This looks like a case where we can use Charles’ Law:  

[tex]\dfrac{V_{1}}{T_{1}} =\dfrac{V_{2}}{T_{2}}[/tex]

Data:

V₁ = 580 mL; T₁ = 17 °C

V₂ = 700 mL; T₂ = ?  

Calculations:

(a) Convert the temperature to kelvins

T₁ = (17 + 273.15) K  = 290.15 K

(b) Calculate the temperature

[tex]\begin{array}{rcl}\dfrac{\text{580 mL}}{\text{290.15 K}} &=&\dfrac{\text{700 mL}}{T_{2}}\\\\\dfrac{\text{1.990}}{\text{1 K}} & = & \dfrac{700}{T_{2}}\\\\1.990T_{2} & = & \text{700 K}\\T_{2} & = & \textbf{350 K}\\\end{array}[/tex]

(c) Convert the temperature back to Celsius

T₂ = (350 – 273.15) °C = 77 °C