Answer:8540 kg-g/s
Explanation:
Given
mass of blue car [tex]m_c=427 kg[/tex]
velocity of blue car [tex]v_c=20 m/s[/tex]
mass of the truck [tex]m_t=1282 kg[/tex]
speed of truck [tex]v_t=13 m/s[/tex]
After collision they stick and lock together
Let v be the velocity of combined system at angle \theta from vertical
Conserving momentum in east direction
[tex]m_c\times v_c=(m_c+m_t)v\cos \theta [/tex]
[tex]427\times 20 =1709\times v\cos \theta [/tex]------1
Conserving Momentum in Y direction
[tex]m_t\times v_t=(m_c+m_t)v\sin \theta [/tex]
[tex]1282\times 13 =1709\times v\sin \theta [/tex]-------2
squaring and then adding 1 & 2 we get
[tex](8540)^2+(16666)^2=(1709)^2\cdot v^2[/tex]
v=10.95 m/s
initial momentum of car[tex]=427\times 20=8540 kg-m/s[/tex]