contestada

Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 45.7 km/s and 56.7 km/s. The slower planet's orbital period is 7.60 years. (a) What is the mass of the star? (b) What is the orbital period of the faster planet, in years?

Respuesta :

Answer:

a)  M = 5.46 10³¹ kg  and b)  T = 1.17 10²s

Explanation:

a) Let's use the law of universal gravitation and Newton's second law

   

    F = G m M / r²

    F = ma

    F = m v² / r

    G m M / r² = m v² / r

    G M / r = v²                    (1)

    M = r v² / G

Let's use the slowest planet, the velocity module is constant

   

     v = d / t

     v = 2π r / T

     T = 7.6 years (365 days / year) (24 h / 1 day) (3600s / 1 h) = 2,397 10⁸ s

     v = 45.7 km / s (1000m / 1km) = 45700 m / s

     r = T v / 2π

     r = 2,397 10⁸ 45700 /2π

     r = 1,743 10¹² m

We calculate the mass of the Star

    M = 1,743 10¹² 45700² / 6.67 10⁻¹¹

    M = 5.46 10³¹ kg

b) Faster period of the planet

From equation1 we cleared the radius of the orbit

     r₂² = G M / v₂²

    v₂ = 56.7 km / s (1000m / 1km) = 56700 m / s

    r₂² = 6.67 10⁻¹¹ 5.46 10³¹/56700²

    r₂² = 1,133 10¹² m2

    r₂ = 1.06 10⁶ m

We calculate the period

     v = 2π  r / T

     T = 2π r / v

     T = 2π  1.06 10⁶/56700

     T = 1.17 10²s