Respuesta :
Answer:
μ = Sin θ * d₁ / (d₂ - Cos θ*d₁)
d₂ = (d₁*Sin θ) / μ
Step-by-step explanation:
a) We apply The work-energy theorem
W = ΔE
W = - Ff*d
Ff = μ*N = μ*m*g
Distance 1:
- Ff*d₁ = Ef - Ei
⇒ - (μ*m*g*Cos θ)*d₁ = (Kf+Uf) - (Ki+Ui) = (Kf+0) - (0+Ui) = Kf - Ui
Kf = 0.5*m*vf² = 0.5*m*v²
Ui = m*g*h = m*g*d₁*Sin θ
then
- (μ*m*g*Cos θ)*d₁ = 0.5*m*v² - m*g*d₁*Sin θ
⇒ - μ*g*Cos θ*d₁ = 0.5*v² - g*d₁*Sin θ (I)
Distance 2:
- Ff*d₂ = Ef - Ei
⇒ - (μ*m*g)*d₂ = (0+0) - (Ki+0) = - Ki
Ki = 0.5*m*vi² = 0.5*m*v²
then
- (μ*m*g)*d₂ = - 0.5*m*v²
⇒ μ*g*d₂ = 0.5*v² (II)
If we apply (I) + (II)
- μ*g*Cos θ*d₁ = 0.5*v² - g*d₁*Sin θ
μ*g*d₂ = 0.5*v²
⇒ μ*g (d₂ - Cos θ*d₁) = v² - g*d₁*Sin θ (III)
Applying the equation (for the distance 1) we get v:
vf² = vi² + 2*a*d = 0² + 2*(g*Sin θ)*d₁ ⇒ vf² = 2*g*Sin θ*d₁ = v²
then (from the equation III) we get
μ*g (d₂ - Cos θ*d₁) = 2*g*Sin θ*d₁ - g*d₁*Sin θ
⇒ μ (d₂ - Cos θ*d₁) = Sin θ * d₁
⇒ μ = Sin θ * d₁ / (d₂ - Cos θ*d₁)
b)
If μ is a known value
d₂ = ?
We apply The work-energy theorem again
W = ΔK ⇒ - Ff*d₂ = Kf - Ki
Ff = μ*m*g
Kf = 0
Ki = 0.5*m*v² = 0.5*m*2*g*Sin θ*d₁ = m*g*Sin θ*d₁
Finally
- μ*m*g*d₂ = 0 - m*g*Sin θ*d₁ ⇒ d₂ = Sin θ*d₁ / μ
(1) The coefficient of kinetic friction will be given as
[tex]\mu_k=\dfrac{Sin\Theta d_1}{d_2-cos\Theta d_1}[/tex]
(2) The distance d traveled by the sled from the end of the slope until it comes to a stop
.[tex]d_2=\dfrac{d_1sin\theta}{\mu_k}[/tex]
What will be the coefficient of kinetic friction and the distance of the sled?
First, we will apply the Work energy theorem
[tex]W=\Delta E[/tex]
[tex]W=-F_f\times d[/tex]
[tex]F_f=\mu_k\times N=\mu_kmg[/tex]
First, we find the distance one
[tex]-F_f\times d_1=E_f-E_i[/tex]
[tex]-(\mu_kmgcos\theta)\times d_1=(k_f+u_f)-(k_i+u_i)=(k_f+0)-(0+u_i)=K_f-u_i[/tex]
[tex]u_i=mgh=mgd_1sin\theta[/tex]
then
[tex]-(\mu_k mgcos\theta )\times d_1 =0.5v^2 -gd_1sin\theta[/tex]
[tex]-\mu_k gcos\theta d_1=0.5v^2 -gd_1sin\theta[/tex]............................(1)
Now for calculating the second distance
[tex]-F_f\times d_2=E_f-E_i[/tex]
[tex]-(\mu_k mg)d_2=(0+0)-(k_i+0)=-k_i[/tex]
[tex]k_i=0.5mv_i^2=0.5mv^2[/tex]
So
[tex]-(\mu_k mg)d_2=0.5v^2[/tex]
[tex]\mu_k gd_2=0.5v^2[/tex]..............................(2)
Now add both the equation we will get
[tex]\mu_k g(d_2-cos\theta d_1)=v^2 -gd_1sin\theta[/tex] ..........................(3)
Applying the equation (for the distance 1) we get v:
[tex]V_f^2=V_i^2+2ad=0^2(gsin\theta)d_1[/tex]
[tex]V-f^2=2gsin\thetad_1=V_i^2[/tex]
Now from the equation (3) we get
[tex]\mu_kg(d_2-cos\thetad_1)=2gsin\theta d_1-gd_1sin\theta[/tex]
[tex]\mu_k (d_2-cos\theta d_1)=sin\theta d_1[/tex]
[tex]\mu_k=\dfrac{sin\theta d_1 }{d_2-cos\theta d_1}[/tex]
Now to find the value of distance
We know the value of [tex]\mu_k[/tex]
By applying the work-energy theorem again
[tex]W=\Delta K[/tex] ⇒ [tex]-F_fd_2=k_f-k_i[/tex]
[tex]F_f=\mu_kmg[/tex]
[tex]k_f=0[/tex]
[tex]k_i=0.5mv^2=0.5m\times 2\times g\times sin\theta\times d_1=mgsin\theta md_1[/tex]
[tex]-\mu_k mgd_2=0-mgsin\thetad_1[/tex]
[tex]d_2=\dfrac{sin\thetad_1}{\mu_k}[/tex]
Thus
(1) The coefficient of kinetic friction will be given as
[tex]\mu_k=\dfrac{Sin\Theta d_1}{d_2-cos\Theta d_1}[/tex]
(2) The distance d traveled by the sled from the end of the slope until it comes to a stop
.[tex]d_2=\dfrac{d_1sin\theta}{\mu_k}[/tex]
To know more about the work-energy theorem follow
https://brainly.com/question/22236101