The half-life for the radioactive decay of U-238 is 4.5 billion years and is independent of initial concentration. How long will it take for 10% of the U-238 atoms in a sample of U-238 to decay? If a sample of U-238 initially contained 1.5×10181.5×1018 atoms when the universe was formed 13.8 billion years ago, how many U-238 atoms does it contain today?

Respuesta :

Answer:

Explanation:

Given

half life [tex](t_{\frac{1}{2})=4.5[/tex] billion year

10 % to decay i.e. 90 % remaining

And [tex]\ln (\frac{C}{C_0})=-kt[/tex]

where k= constant

t=time

and [tex]k=\frac{\ln (2)}{t_{\frac{1}{2}}}=\frac{\ln (2)}{4.5}[/tex]

so [tex]\frac{C}{C_0}=0.9[/tex]

[tex]\ln (0.9)=-\frac{\ln (2)}{4.5}\times t[/tex]

t=0.684 billion year

(b)[tex]C_0=1.5\times 10^{18}[/tex]

t=13.8 billion year

[tex]\ln (\frac{C}{C_0})=-0.15403\times 13.8[/tex]

[tex]\ln (\frac{C}{C_0})=-2.125[/tex]

[tex]C=C_0e^{-2.125}[/tex]

[tex]C=1.5\times 10^{18}\times 0.1194=0.179\times 10^{18}[/tex] atoms