Answer:
Step-by-step explanation:
We have to integrate the function
[tex]16+x^2+y^2[/tex] over the region
[tex]1\leq r\leq 3\\0\leq \theta \leq \pi[/tex]
Let us convert into polar coordinates
x=cost : y = sint
Then we get dxdy = rdr dt
So we get the integral as
[tex]\int \int _R (16+x^2+y^2)^2 dxdy\\= \int\limits^3_0 \int\limits^\pi_0( {16+r^2}^2) (r)drdt\\ =(t) (\frac{(16+r^2)^3}{6}[/tex]
Substitute the limits to get
Answer
=[tex](\pi-0) [\frac{1}{6} (25-16)\\=1.5 \pi[/tex]