Answer:
[tex]K_{2}=7302.4J[/tex]
Explanation:
Given the initial velocity of the clown, his mass and final height we can calculate the final kinetic energy using the conservation of total mechanical energy
[tex]K_{1}+U_{1}=K_{2}+U_{2}[/tex]
[tex]K_{2}=K_{1}+U_{1}-U_{2}[/tex]
[tex]K_{2}=\frac{1}{2}mv_{1}^{2}+mgh_{1}-mgh_{2}[/tex]
Since [tex]h_{1}=0[/tex]
[tex]K_{2}=\frac{1}{2}mv_{1}^{2}-mgh_{2}[/tex]
[tex]K_{2}=\frac{1}{2}(70kg)(17m/s)^2-(70kg)(9.8m/s^2)(4.1m)=7302.4J[/tex]
[tex]K_{2}=7302.4J[/tex]