Respuesta :

Answer:

[tex](2\cdot 6)^{\frac{3}{2}}=24(3)^{\frac{1}{2}}[/tex]

Step-by-step explanation:

The given expression is [tex](2*6)^{\frac{3}{2}}[/tex]

We multiply within the parenthesis to get:

[tex](12)^{\frac{3}{2}}[/tex]

Recall that: [tex]a^{\frac{m}{n} } =\sqrt[n]{x^m}[/tex]

We apply this property to get:

[tex](12)^{\frac{3}{2}}=\sqrt{12^3}[/tex]

[tex](12)^{\frac{3}{2}}=\sqrt{12^2*12}[/tex]

This simplifies to

[tex](12)^{\frac{3}{2}}=12\sqrt{12}[/tex]

We can simplify further

[tex](12)^{\frac{3}{2}}=12\sqrt{4*3}=12*2\sqrt{3}=24\sqrt{3}[/tex]

We rewrite as rational exponent  [tex]24(3)^{\frac{1}{2}}[/tex]