Calculate the values of ΔU, ΔH, and ΔS for the following process:

1 mole of liquid water at 25 C and 1 atm ➡️ 1 mole of steam at 100 C and 1 atm

The molar heat of vaporization of water at 373 K is 40.79 kJ mol-1, and molar heat capacity of water is 75.3 J K-1 mol-1. Assume molar heat capacity to be temperature independent and ideal-gas behavior.

Respuesta :

Answer:

ΔU = 45.814 KJ

ΔH = 46.4375 KJ

ΔS = 18.76 J/K

Explanation:

            H2O(l)        →          H2O(l)                →              H2O(steam)

   298.15K, 1atm   ΔHp     373.15K,1atm       ΔHv         373.15K,1 atm

∴ ΔHp = Qp = nCpΔT

∴ n H2O = 1 mol

∴ Cp,n = 75.3 J/mol.K

∴ ΔT = 373.25 - 298.15 = 75 K

⇒ Qp = (1 mol)*(75.3 J/mol.K)*(75K) = 5647.5 J

⇒ ΔHp = 5647.5 J = 5.6475 KJ

⇒ ΔH = ΔHp + ΔHv

∴ ΔHv = 40.79 KJ/mol * 1 mol = 40.79 KJ  

⇒ ΔH = 5.6475 KJ + 40.79 KJ = 46.4375 KJ

ideal gas:

∴ ΔH = ΔU + PΔV

∴ V1 = nRT1/P1 = ((1)*(0.082)*(298.15))/1 = 24.45 L

∴ V2 = nRT2/P2 = ((1)*(0.082)*(373.15))/ 1 = 30.59 L

⇒ ΔV = V2 - V1 = 6.15 L * (m³/1000L) = 6.15 E-3 m³

∴ P = 1 atm * (Pa/ 9.86923 E-6 atm) = 101325.027 Pa

⇒ ΔU = ΔH - PΔV = 46.4375 KJ - ((101325.027 Pa*6.15 E-3m³)*(KJ/1000J))

⇒ ΔU = 46.4375 KJ - 0.623 KJ

⇒ ΔU = 45.814 KJ

∴ ΔS = Cv,n Ln (T2/T1) + nR Ln (V2/V1)

⇒ ΔS = (75.3) Ln(373.15/298.15) + (1)*(8.314) Ln (30.59/24.45)

⇒ ΔS = 16.896 J/K + 1.863 J/K

⇒ ΔS = 18.76 J/K