The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula:

E= -Ry/n^2

In this equation Ry stands for the Rydberg energy, and n stands for the principal quantum number of the orbital that holds the electron.

Calculate the wavelength of the line in the absorption line spectrum of hydrogen caused by the transition of the electron from an orbital with n=2 to an orbital with n=3.

Respuesta :

Answer:

The wavelength of the line in the absorption line spectrum of hydrogen caused by transition is 657.1 nm.

Explanation:

Energy of the electron in a hydrogen atom in nth shell:

[tex]E=\frac{-R_y}{n^2}[/tex]

[tex]R_y=2.178\times 10^{-18} J[/tex]

Energy of an electron in n = 2:

[tex]E_2=\frac{-R_y}{2^2}=-\frac{R_y}{4}[/tex]

Energy of an electron in n = 3:

[tex]E_3=\frac{-R_y}{3^2}=-\frac{R_y}{9}[/tex]

Energy difference in between both the shells:

[tex]\Delta E=E_3-E_2[/tex] :

[tex]=-\frac{R_y}{9}-(-\frac{R_y}{4})=\frac{5R_y}{36}[/tex]

[tex]\Delta E=\frac{5R_y}{36} =\frac{5\times 2.178\times 10^{-18} J}{36}[/tex]

[tex]=3.025\times 10^{-19} J[/tex]

[tex]\Delta E=3.025\times 10^{-19} J=\frac{hc}{\lambda}[/tex]

[tex]\lambda =\frac{hc\times 36}{3.025\times 10^{-19} J}[/tex]

=[tex]\frac{6.626\times 10^{-34} J s\times 3\times 10^8 m/s}{3.025\times 10^{-19} J}[/tex]

[tex]\lambda =6.571\times 10^{-7} m=657.1 nm[/tex]

[tex]1 m = 10^9 nm[/tex]

The wavelength of the line in the absorption line spectrum of hydrogen caused by transition is 657.1 nm.