Respuesta :

Answer:

[tex]x = \frac{1 + \sqrt{(-219)} }{22} , \space  x = \frac{1 - \sqrt{(-219)} }{22}[/tex]

Step-by-step explanation:

f(x)=11x^2+x+5 is the given equation,

now comparing it with the  standard equation [tex]ax^{2} + bx + c = 0[/tex], we get

[tex]11x^{2} + x + 5 = 0[/tex]

Here, a = 11, b = 1 and c = 5

Now  by QUADRATIC FORMULA

x =  [tex]\frac{-b \pm \sqrt{b^{2} - 4ac}   }{2a}[/tex]

Now, [tex]b^{2}  - 4ac = 1^{2}  - 4 (11) (5) = 1 - 220 = -219[/tex]

Now as discriminant D < 0, then the roots are imaginary and distinct.

So, roots are [tex]x = \frac{-1 + \sqrt{(-219)} }{22} , \space  x = \frac{-1 - \sqrt{(-219)} }{22}[/tex]

These are the two roots of the given equation.