Respuesta :
Answer:
[tex]v_{f}[/tex] = 7.06 107 m/s
Explanation:
In a crash problem we must define a system, in this case it is formed by the proton and the particle with which it collides. For this system the force during cooking is internal, so the amount of movement is conserved and as it indicates that the shock is elastic, the kinetic energy is also conserved.
[tex]p_{f}[/tex] = p₀
[tex]K_{f}[/tex] = K₀
Before the crash
p₀ = [tex]m_{p}[/tex] [tex]v_{op}[/tex] + 0
K₀ = ½ [tex]m_{p}[/tex] [tex]v_{op}[/tex]² + 0
After the crash
[tex]p_{f}[/tex] = [tex]m_{p}[/tex] [tex]v_{fp}[/tex] + m vf
[tex]K_{f}[/tex] = ½ [tex]m_{p}[/tex] [tex]v_{fp}[/tex]² + ½ m vf²
Let's write conservation equations
[tex]m_{p}[/tex] [tex]v_{op}[/tex] = [tex]m_{p}[/tex] [tex]v_{fp}[/tex] + m vf
½ [tex]m_{p}[/tex] [tex]v_{op}[/tex]² = ½ [tex]m_{p}[/tex] [tex]v_{fp}[/tex]³ + ½ m vf²
[tex]m_{p}[/tex] ([tex]v_{op}[/tex] -[tex]v_{fp}[/tex]) = m vf
[tex]m_{p}[/tex] ([tex]v_{op}[/tex] ² -[tex]v_{fp}[/tex]²) = m vf²
We have a System of two equations with two incognitites, so it can be solved, using the relation (a + b) (a-b) = a² -b² and with a little algebra
We calculate the mass of the particle
[tex]v_{f}[/tex] = ([tex]m_{p}[/tex] / m) ([tex]v_{op} - v_{fp}[/tex])
[tex]m_{p}[/tex] [tex](v_{op}+v_{fp}) (v_{op} - v_{fp})[/tex]= m [tex]m_{p}[/tex] ² / m² ([tex]v_{op} - v_{fp}[/tex])²
[tex]v_{op}[/tex] + [tex]v_{fp}[/tex] = [tex]m_{p}[/tex] / m [tex]v_{op}[/tex] - [tex]v_{fp}[/tex]
m = [tex]v_{op}[/tex] - [tex]v_{fp}[/tex] / [tex]v_{op}[/tex] + [tex]v_{fp}[/tex] [tex]m_{p}[/tex]
m = (3.6 - 3.30) 10 7 / (3.6+ 3.3) 107 [tex]m_{p}[/tex]
m = 4,248 10-2 [tex]m_{p}[/tex]
We calculate the speed of the particle
[tex]v_{f}[/tex] = ([tex]m_{p}[/tex] / m) [tex](v_{op} - v_{fp} )[/tex]
[tex]v_{f}[/tex] = [tex]m_{p}[/tex] / (4,248 10-2[tex]m_{p}[/tex]) (3.6 -3.3) 107
[tex]v_{f}[/tex]. = 1 / 4,248 10-2 0.3 107
[tex]v_{f}[/tex] = 7.06 107 m / s