Answer:
a) V=0.125 and K=0.025
b) Y-intercept = 1/V and X-intercept = -1/K
Step-by-step explanation:
a)
If
[tex]\bf f(x)=\frac{K}{V}x+\frac{1}{V}[/tex]
and also
f(x) = 0.2x + 8
Then
[tex]\bf \frac{1}{V}=8\rightarrow V=\frac{1}{8}[/tex]
[tex]\bf \boxed{V=0.125}[/tex]
[tex]\bf \frac{K}{V}=\frac{K}{0.125}=0.2\rightarrow\boxed{K=0.025}[/tex]
b)
The Y-intercept is gotten when x=0, so the Y-intercept is [tex]\bf \boxed{\frac{1}{V}}[/tex]
The X-intercept is gotten when y=0 (f(x)=0) so
[tex]\bf 0=\frac{K}{V}x+\frac{1}{V}\rightarrow\frac{K}{V}x=-\frac{1}{V}\rightarrow x=-\frac{1}{K}[/tex]
and the X-intercept is
[tex]\bf \boxed{x=-\frac{1}{K}}[/tex]
K and V written as fractions are
[tex]\bf K=\frac{25}{1000}=\frac{1}{40}[/tex]
[tex]\bf V=\frac{1}{8}[/tex]