Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ E(\stackrel{x_1}{-12}~,~\stackrel{y_1}{5})\qquad F(\stackrel{x_2}{7}~,~\stackrel{y_2}{-9}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{7-12}{2}~~,~~\cfrac{-9+5}{2} \right)\implies \left( \cfrac{-5}{2}~~,~~\cfrac{-4}{2} \right)\implies \left( -2\frac{1}{2}~~,~-2 \right)[/tex]

Answer:

[tex]\left(\dfrac{-5}{2},-2\right)[/tex]

Step-by-step explanation:

It is given that point E is located at (–12, 5) and point F is located at (7, –9).

We need to find the coordinates of the midpoint of EF.

Formula for midpoint:

[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]

Substitute the given values in the above formula.

[tex]Midpoint=\left(\dfrac{-12+7}{2},\dfrac{5-9}{2}\right)[/tex]

On simplification, we get

[tex]Midpoint=\left(\dfrac{-5}{2},\dfrac{-4}{2}\right)[/tex]

[tex]Midpoint=\left(\dfrac{-5}{2},-2\right)[/tex]

Therefore, the midpoint is [tex]\left(\dfrac{-5}{2},-2\right)[/tex].