Find the length of the height of the right trapezoid shown below, if it has the greatest possible area and its perimeter is equal to 6 units.

Find the length of the height of the right trapezoid shown below if it has the greatest possible area and its perimeter is equal to 6 units class=

Respuesta :

Answer:

The height of the right trapezoid is   [tex]\frac{6}{5+\sqrt{3}}\ units[/tex]

Step-by-step explanation:

Let

x ----> the height of the right trapezoid in units

we know that

The perimeter of the figure is equal to

[tex]P=AB+BC+CD+DH+HA[/tex]

we have

[tex]P=6\ units[/tex]

[tex]AB=BC=CH=HA=x[/tex] ---> because is a square

substitute

[tex]6=x+x+CD+DH+x[/tex]

[tex]6=3x+CD+DH[/tex] -----> equation A

In the right triangle CDH

[tex]sin(30\°)=\frac{CH}{CD}[/tex]

[tex]sin(30\°)=\frac{1}{2}[/tex]

so

Remember  that [tex]CH=x[/tex]

[tex]\frac{1}{2}=\frac{x}{CD}[/tex]

[tex]CD=2x[/tex]

[tex]tan(30\°)=\frac{CH}{DH}[/tex]

[tex]tan(30\°)=\frac{\sqrt{3}}{3}[/tex]

so

[tex]\frac{\sqrt{3}}{3}=\frac{x}{DH}[/tex]

[tex]DH=x\sqrt{3}[/tex]

substitute the values in the equation A

[tex]6=3x+CD+DH[/tex] -----> equation A

[tex]CD=2x[/tex]

[tex]DH=x\sqrt{3}[/tex]

[tex]6=3x+2x+x\sqrt{3}[/tex]

[tex]6=5x+x\sqrt{3}[/tex]

[tex]6=x[5+\sqrt{3}][/tex]

[tex]x=\frac{6}{5+\sqrt{3}}\ units[/tex]

Answer:

1

Step-by-step explanation:

i dont know the explaination sorry but the answer should be correct